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ABSTRACT 

This project attempted to systematically and quantitatively characterize the microstruc- 

ture of heterogeneous materials and to use such information to predict rigorously the macro- 

scopic behavior (e.g., effective moduli). By employing homogenization theory and the meth- 

ods of statistical mechanics, we were able to mathematically describe the microstructure and, 

as a result, accurately determine the macroscopic response under a wide range of conditions. 

A goal was to treat seemingly disparate problems using a unified methodology. The gener- 

ality of our approach enabled us to treat a wide class of two- and three-phase isotropic and 

anisotropic heterogeneous materials. This work will aid in leading to a highly cost-effective 

means of optimally designing heterogeneous materials for a particular application. 



I.   GRANT ACCOMPLISHMENTS 

In what follows we describe the accomplishments that we made on the AFOSR Grant No. 

F49620-92-J-0501. We published 11 refereed journal articles and gave 25 invited presenta- 

tions on our AFOSR-related work. 

1. Cross-Property Relations 

An intriguing fundamental as well as practical question in the study of composite materials 

is the following: What can be said about various unknown effective properties when differ- 

ent properties of-the composite are known? Such cross-property relations become especially 

useful if one property is more easily measured than another property. Since the effective prop- 

erties of random media reflect important microstructural information about the medium, one 

might expect that one could extract useful information about one effective property given 

an exact determination of another property. Employing the so-called translation method 

(see Ref. 2 and references therein), we have derived the sharpest rigorous upper and lower 

bounds on the effective elastic moduli for two-dimensional, two-phase isotropic composites 

(i.e., transversely isotropic fiber-reinforced materials) in terms of the effective conductivity 

ae [2,6]. The former bounds are defined in the elastic moduli-conductivity planes by hy- 

perbolas. Certain boundaries of these regions are realized by specific microgeometries and 

thus represent optimal bounds. We have also found the best available cross-property bounds 

for three-dimensional isotropic composites that link the effective bulk modulus Ke to the 

effective conductivity cre [8]. 

How sharp are our cross-property estimates given an exact determination of one of 

the effective properties? To examine this question we use exact conductivity data and 

our cross-property relations to predict the effective bulk modulus Ke for hexagonal arrays 

of superconducting, superrigid cylindrical fibers (phase 2) in a matrix. Our predictions 

are compared to exact bulk modulus data [1] (see Fig. 1). The agreement between our 

conductivity predictions and elastic moduli data is excellent (see Fig.  1).  It is noteworthy 



that standard variational upper bounds on the effective properties (such as Hashin-Shtrikman) 

here diverge to infinity as they do not incorporate information that the superrigid phase 

is in fact disconnected. In contrast, our cross-property upper bound uses the fact that 

the infinite-contrast phase is disconnected via conductivity information. In summary, cross- 

property relations provide a new and powerful way to extract important microstructural 

information on composites. 
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Figure 1: Comparison of the bulk modulus-conductivity bounds with the exact bulk modulus 
data (circles) [1] for a superrigid, superconducting hexagonal array of circular inclusions. 
Curves are the bounds using exact conductivity data. 

More recently, we have applied the cross-property realtions to solid bodies that are 

damaged by cracks [7]. These are the first rigorous bounds on the effective moduli of cracked 

solids that do not require information about the crack density and geometry, quantities which 

are usually difficult to measure. 



2. Imperfect Interfaces 

The preponderance of theoretical predictions of the effective moduli of composites have been 

carried out assuming that the interface plays no role in determining the effective behavior 

of the materials, i.e., perfect interfaces. In real materials, interfacial effects can dramatically 

alter the effective behavior. For example, the Kapitza thermal resistance at the interface 

can be significant at sufficiently low temperatures, interfacial roughness can be appreciable 

enough to result in electrical resistance at the interface, and debonding at the interface can 

errode the effective elastic behavior of the composite. 
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Figure 2: Comparison of the lower bounds of Torquato and Rintoul [5] on the dimensionless 
conductivity ae/ai vs. inclusion volume fraction </>2 to the experimental data (circles and 
squares) of De Araujo and Rosenberg for metallic particles in epoxy at 2 resistance values 
(R = 0 is perfect interface) corrsponding to two different temperatures. 

We assert that in order to get sharp estimates of the effective properties of composites 

with imperfect interfaces, one must incorporate nontrivial morphological information about 

the interface. For example, previous elastic-moduli bounds for imperfect interfaces do not 

incorporate such nontrivial interfacial information and thus are not very sharp bounds. We 

begin by considering the problem of determining the effective conductivity <re of dispersions 



of spheres with imperfect interfaces since: (i) it is mathematically easier than the elastic 

problem, and (ii) because (unlike the mechanical problem) experimental data exists for the 

interface property. For such a system we have developed rigorous bounds on ae [5] in terms 

of the conductivity of the inclusions, 02, conductivity of the matrix, <7i, the dimensionless 

interface resistance, R, inclusion volume fraction fa, and higher-order morphological infor- 

mation, including interfacial statistics. Figure 2 shows that our new bounds give remarkably 

accurate predictions of the effective thermal conductivity of suspensions of metallic particles 

in epoxy matrices for two values of the Kapitza resistance R (R = 0 corresponds to a perfect 

interface). 

We have recently evaluated the effective conductivity of periodic arrays of spheres with 

interfacial resistance [10]. Corresponding work was carried out for superconducting interfaces 

[11]. 

3. General Property Estimates 

It is useful to obtain estimates of the effective mechanical properties that incorporate mi- 

crostructural information beyond that contained in volume fractions alone. We have recently 

derived the best possible bounds on the effective elastic moduli of any transversely isotropic 

fiber-reinforced material (with a perfect interface) that depend upon three-point correlation 

function information [4]. We also found bounds on the effective bulk and shear moduli of 

suspensions of overlapping spheres [3]. 

We have also obtained the first nontrivial phase-interchange relations for the effective 

elastic moduli of both transversely isotropic and isotropic two-phase composites [9]. These 

relations are useful in studying such composite materials near their percolation thresholds. 



4. Computer Simulations 

Compared to theoretical studies, there has been much less research directed toward ob- 

taining effective properties "exactly" from computer simulations, especially for off-lattice or 

continuum models (e.g., distribution of particles in a matrix). Such "computer experiments" 

could provide unambiguous tests on theories for well-defined model microstructures. We 

have applied the boundary element method to determine the effective elastic moduli of an 

idealized model of hexagonal arrays of infinitely long, aligned cylinders in a matrix (a model 

of a fiber-reinforced material) or a thin-plate composite consisting of hexagonal arrays of 

disks in a matrix [1]. This has led to the most comprehensive set of simulation data for the 

elastic moduli of this useful model system. We intend to apply this technique and related 

numerical methods (finite elements) to compute the effective moduli of random systems. 
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